Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs.

نویسندگان

  • Yuelin Zhang
  • Yu Ti Cheng
  • Na Qu
  • Qingguo Zhao
  • Donglin Bi
  • Xin Li
چکیده

NPR1 is required for systemic acquired resistance, and there are five NPR1 paralogs in Arabidopsis. Here we report knockout analysis of two of these, NPR3 and NPR4. npr3 single mutants have elevated basal PR-1 expression and the npr3 npr4 double mutant shows even higher expression. The double mutant plants also display enhanced resistance against virulent bacterial and oomycete pathogens. This enhanced disease resistance is partially dependent on NPR1, can be in part complemented by either wild-type NPR3 or NPR4, and is not associated with an elevated level of salicylic acid. NPR3 and NPR4 interact with TGA2, TGA3, TGA5 and TGA6 in yeast two-hybrid assays. Using bimolecular fluorescence complementation analysis, we show that NPR3 interacts with TGA2 in the nucleus of onion epidermal cells and Arabidopsis mesophyll protoplasts. Combined with our previous finding that basal PR-1 levels are also elevated in the tga2 tga5 tga6 triple mutant, we propose that NPR3 and NPR4 negatively regulate PR gene expression and pathogen resistance through their association with TGA2 and its paralogs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression.

The Arabidopsis NPR1 gene is a positive regulator of inducible plant disease resistance. Expression of NPR1 is induced by pathogen infection or treatment with defense-inducing compounds such as salicylic acid (SA). Transgenic plants overexpressing NPR1 exhibit enhanced resistance to a broad spectrum of microbial pathogens, whereas plants underexpressing the gene are more susceptible to pathogen...

متن کامل

Non-Host Defense Response in a Novel Arabidopsis-Xanthomonas citri subsp. citri Pathosystem

Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is one of the most destructive diseases of citrus. Progress of breeding citrus canker-resistant varieties is modest due to limited resistant germplasm resources and lack of candidate genes for genetic manipulation. The objective of this study is to establish a novel heterologous pathosystem between Xcc and the well-established model...

متن کامل

Nitric oxide-mediated maintenance of redox homeostasis contributes to NPR1-dependent plant innate immunity triggered by lipopolysaccharides.

The perception of lipopolysaccharides (LPS) by plant cells can lead to nitric oxide (NO) production and defense gene induction. However, the signaling cascades underlying these cellular responses have not yet been resolved. This work investigated the biosynthetic origin of NO and the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) to gain insight into the mechanism involved in LPS-in...

متن کامل

The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors.

The Arabidopsis NPR1 gene is essential in activating systemic, inducible plant defense responses. To gain a better understanding of NPR1 function, we conducted a yeast two-hybrid screening procedure and identified a differential interaction between NPR1 and all known members of the Arabidopsis TGA family of basic leucine zipper transcription factors. In the electrophoretic mobility shift assay,...

متن کامل

Opposing Effects on Two Phases of Defense Responses from Concerted Actions of HEAT SHOCK COGNATE70 and BONZAI1 in Arabidopsis.

The plant immune system consists of multiple layers of responses targeting various phases of pathogen infection. Here, we provide evidence showing that two responses, one controlling stomatal closure and the other mediated by intracellular receptor proteins, can be regulated by the same proteins but in an antagonistic manner. The HEAT SHOCK COGNATE70 (HSC70), while previously known as a negativ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 48 5  شماره 

صفحات  -

تاریخ انتشار 2006